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This paper shows a computer aided diagnosis (CAD) combining continuous attribute discretization and
association rule mining for the early diagnosis of Alzheimer’s disease (AD) based on emission computed
tomography images. A mask is obtained from the mean control images by an image histogram segmen-
tation. 3D voxels centered in mask coordinates are selected by equal-width binning-based discretization
of the mean intensity. These Regions of Interest (ROIs) are then used as input for the Association Rule
(AR)-mining using control subject images to fully characterize the normal pattern of the image. Minimum
support and confidence are fixed to the maximum values in order to obtain the highest predictive power
rules for each discretization level (or combination of levels). Finally, classification is carried out by com-
paring the number of ARs verified by each subject under test. The proposed system is evaluated using two
different databases of single photon emission computed tomography (SPECT) and positron emission
tomography (PET) images from the Alzheimer Disease Neuroimaging Initiative (ADNI) yielding an accu-
racy up to 96.91% (for SPECT) and 92% (for PET), thus outperforming the baseline (the so called continu-
ous AR-based method) and other recently reported CAD methods.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The number of people with Alzheimer’s disease (AD) is expected
to increase in the following decades, thus there is a need for finding
solutions that not only delay but also prevent its development
which is becoming an urgent public health concern. The current
diagnostic process should be refocussed toward the pathological
substrate of this disease rather than symptoms in order to initiate
therapeutic measures as soon as possible without waiting for clin-
ical manifestations to appear (Brookmeyer, Johnson, Ziegler-Gra-
ham, & Michael Arrighi, 2007).

Currently, AD diagnosis is based on the information provided by
a careful clinical examination, in-depth interview of the patient
and relatives, and a neuropsychological assessment. Along with
those tests, nuclear medicine and magnetic resonance imaging
have proven its efficiency as a non-invasive tool for diagnosis
(Ng, Villemagne, & Berlangieri, 2007). Brain functional imaging,
such as Single Photon Emission Computed Tomography (SPECT)
ll rights reserved.
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or Positron Emission Tomography (PET), have been proved to be
a very effective tool for data extraction in the early diagnosis of
AD by using non-invasive methods (Kogure et al., 2000). In this
sense, SPECT provides functional information, i.e., regional cerebral
blood flow (rCBF) for identifying pathologic anomalies in internal
tissues or organs, even before anatomical and structural alterations
are observable. On the other hand, PET measures the rate of glu-
cose metabolism with the tracer 18F-Fluorodeoxyglucose.

Computer Aided Diagnosis (CAD) tools based on medical imag-
ing are a very valuable help for physicians in the AD detection
(Chyzhyk, Graña, Savio, & Maiora, 2012; Segovia et al., 2012; Martí-
nez-Murcia, Górriz, Ramírez b, Puntonet, & Salas-Gonzalez, 2012;
Chaves et al., 2009). Whereas univariate CAD approaches process
each voxel more or less independently (Friston, Ashburner, Kiebel,
Nichols, & Penny, 2007b), multivariate approaches directly define
functional connectivity across the brain by the analysis of regions
of interest (ROIs) (López et al., 2009). In the latter case, the higher
dimensionality of the input feature space in comparison with the
relatively small number of subjects arises various problems such
as curse of dimensionality and large hypothesis space, thus some
form of feature selection is often required in order to discard some
irrelevant and/or redundant features, that not only make learning
harder, but also degrade generalization performance of statistical
learning models. Several feature selection approaches have been
proposed and can be broadly classified into three categories: the
filter approach, the wrapper approach, and the hybrid approach

http://dx.doi.org/10.1016/j.eswa.2012.09.003
mailto:rosach@ugr.es
http://dx.doi.org/10.1016/j.eswa.2012.09.003
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


1572 R. Chaves et al. / Expert Systems with Applications 40 (2013) 1571–1578
(Kabir, Islam, & Murase, 2010). The proposed algorithm combines
in a single step, feature selection (Chaves, Ramrez, Górriz, & Punt-
onet, 2012) and discretization as in Ribeiro, Traina, Traina, and
Azevedo-Marques (2008).

Our adaptation involves discretizing continuous attributes
(mean 3D voxel intensity) into histogram bins and is also moti-
vated by an equal width interval binning (Dougherty, Kohavi, &
Mehran Sahami, 1995). Combined or independently considered
discretized bins define the value that the feature must possess to
be considered in the Association Rule (AR)-mining stage. Properly
discretized data can simplify the process of learning and may im-
prove the generalizability of the learned results (Kim & Han, 2000).

This paper shows a novel method for finding associations
among discrete attributes of functional images by: (i) examining
the differences and analogies between databases, and (ii) selecting
better bins to remove irrelevant features for AD early diagnosis.
Classification is performed using an AR-based approach outper-
forming the AR-baseline approach (Chaves et al., 2011) in which
the whole feature histogram is used for AR-mining. In this sense,
the latter method limits the number of activated ROIs under AR-
mining analysis.

The paper is organised as follows. Section 2 shows an introduc-
tion to discretization methods. Section 3 provides Association
Rules background information. The SPECT and PET databases used
to evaluate the proposed method are described in Section 4. Sec-
tion 5 shows a novel voxel selection method based on intensity
histogram masking and discretization, together with AR mining
and classification stages. Finally, the evaluation experiments are
detailed and discussed in Section 6 and conclusions are drawn in
Section 7.
2. Discretization methods

A very large proportion of real data sets include continuous
variables, that is, measured at the interval or ratio level. The pro-
cess of partitioning continuous variables into categories is usually
termed discretization whose first goal is to find a set of cut points
to partition the range into a small number of intervals that have
good class coherence. In addition, feature discretization is closely
related to dimensionality reduction (Park & Lee, 2009). The second
goal is to minimize the number of intervals without significant loss
of attribute mutual independence (Kotsiantis & Kanellopoulos,
2006). In Liu, Hsu, and Ma (1998), it is proposed the discretizing
of continuous attributes based on the classification predetermined
class target in order to integrate classification and AR mining. Gen-
erally, the discretization methods can be categorized as: super-
vised or unsupervised, direct or incremental and static or
dynamic (Dougherty et al., 1995). While local methods produce
partitions that are applied to localized regions of the instance
space; global methods, such as binning, produce a mesh over the
entire n-dimensional continuous space (Chmielewski & Grzymal-
a-Busse, 1994). In contrast to unsupervised, supervised methods
make use of the class labels in the discretization process. Whereas
static methods, such as binning or entropy-based partitioning (Fay-
yad & Irani, 1993), perform one discretization pass of the data of
each feature and determine the value of the maximum number
of intervals (K); dynamic methods conduct a search for all the fea-
tures simultaneously in order to capture interdependencies in fea-
ture discretization. Equal width interval binning is an unsupervised
method often applied as a means for producing nominal values
from continuous ones and involves dividing the range of observed
values of a continuous feature into K (selected by the user) equally
sized bins (Dougherty et al., 1995). If a variable x is observed to
have values bounded by xmin and xmax, then this method computes
the bin width as a ¼ xmax�xmin
K and constructs bin boundaries at

xmin + i � a where i = 1, . . . ,K � 1.
3. Association rules

The standard association-rule mining discovers correlations
among items within transactions (Agrawal & Srikant, 1994). The
prototypical example of utilizing AR mining is market basket anal-
ysis (Jukic & Nestorov, 2006). However, ARs are a promising alter-
native in medical image classification (Chaves et al., 2011). For
example, in Dua, Singh, and Thompson (2009), ARs are derived be-
tween various texture components extracted from segments of a
mammography dataset and classification is performed using a un-
ique weighted AR-based classifier. Moreover, (Ribeiro et al., 2009)
proposes the Image Diagnosis Enhancement through AR (IDEA)
method in order to improve CAD systems. Nowadays, AR-based
methods are often employed to suggest a second opinion to the
radiologist or a preliminary diagnosis of a new image, in which dis-
cretization of continuous values before extraction has been re-
cently introduced. Nonetheless, the application of ARs to early
diagnosis of AD is still a challenge, i.e., Chaves et al. (2011), where
the method process image features that consists of continuous
attributes to mine ARs.

The well-known Apriori algorithm was firstly proposed in Agra-
wal and Srikant (1994). In this context, A priori works iteratively
over ROIs in order to identify the frequent itemsets and to generate
relationships (ARs) among brain areas (Chaves et al., 2011). A
transaction t is defined as an implication of the form ‘‘subject that
contains activated X area is likely to contain an activated Y area as
well’’ and is noted as X) Y, where X and Y belong to the set of
transaction items (Jukic & Nestorov, 2006), or discretized ROIs in
this work I = {i1, i2, . . . , im}. The relevance of each rule is measured
by the support and confidence of the transaction. The support mea-
sures the proportion of transactions in the data set which contain
the itemset, thus we are interested in rules with relatively high
support. The confidence measures the strength of the correlation,
thus rules with low confidence are not meaningful, even if their
support is considerably high. To perform a search, the user has to
specify a minimum support (minsupp) and a minimum confidence
(minconf) for analyzing frequent itemsets (He, Xiong, Yang, & Park,
2011; Dasseni, Verykios, Elmagarmid, & Bertino, 2001).
4. Materials

4.1. ECD-SPECT database

SPECT images used in this work were acquired by means of a
PRISM 3000 gammacamera after injecting a gamma emitting tech-
netium-99 m labeled ethyl cysteinate dimer (99mTc-ECD) to each
subject. These images were reconstructed from projection data
by filtered backprojection (FBP) in combination with a Butterworth
noise filter. Then, SPECT images were spatially normalized (Salas-
Gonzalez, Górriz, Ramírez, Lassl, & Puntonet, 2008) in order to en-
sure that a given voxel in different images refer to the same ana-
tomical position. This process was done by using Statistical
Parametric Mapping (SPM) (Friston, Ashburner, Kiebel, Nichols, &
Penny, 2007a) yielding 69 � 95 � 79 normalized SPECT images.

A direct comparison of the voxel intensities of the images of dif-
ferent subject is not possible without normalization of the intensi-
ties. Intensity level of the images is normalized to the maximum
intensity, which is computed for each image individually by aver-
aging over the 0.1% of the highest voxel intensities as in López et al.
(2009).

The database is built up of imaging studies of subjects following
the protocol of an hospital-based service. First, the neurologist



Table 1
Demographic details of the SPECT database. AD 1 = mild perfusion deficit, AD
2 = moderate deficit, AD 3 = severe deficit. l and r stands for population mean and
standard deviation, respectively.

Num. of samples Sex (M/F) (%) Age l [range/r]

CTRL 41 32.95/12.19 71.51 [46–85/7.99]
AD 1 30 10.97/18.29 65.20 [23–81/13.36]
AD 2 22 13.41/9.76 65.73 [46–86/8.25]
AD 3 4 0/2.43 76 [69–83/9.90]

Table 2
Demographic details of the PET dataset. l and r stands for population mean and
standard deviation respectively.

Demographic details

Num. of samples Sex (M/F) (%) Age l [range/r]

CTRL 75 29.33/20.67 75.97 [62–86/4.91]
AD 75 31.33/18.67 75.72 [55–88/7.40]

R. Chaves et al. / Expert Systems with Applications 40 (2013) 1571–1578 1573
evaluated the cognitive function, and those patients with findings
of memory loss or dementia were referred to the nuclear medicine
department in the Virgen de las Nieves hospital (Granada, Spain), in
order to acquire complementary screening information for diagno-
sis.2 Experienced physicians evaluated the images visually. The
images were assessed using four different labels: Control (CTRL)
for subjects without scintigraphic abnormalities and mild perfusion
deficit (AD1), moderate deficit (AD2) and severe deficit (AD3), to dis-
tinguish between different levels of presence of hypo-perfusion pat-
terns compatible with AD. In total, the database consists of N = 97
subjects: 41 CTRL, 30 AD1, 22 AD2 and 4 AD3 (see Table 1 for demo-
graphic details). Since the patients are not pathologically confirmed,
the subject’s labels possess some degree of uncertainty, as the pat-
tern of hypo-perfusion may not reflect the underlying pathology of
AD, nor the different classification of scans necessarily reflect the
severity of the patients symptoms. However, when pathological
information is available, visual assessments by experts have been
shown to be very sensitive and specific labeling methods, in contrast
to neuropsychological tests Jobst, Barnetson, and Shepstone (1998),
Dubois et al. (2007). Given that this is an inherent limitation of
’in vivo’ studies, our working-assumption is that the labels are true,
considering the subject label positive when belonging to any of the
AD classes, and negative otherwise. This work does not imply any
experimental intervention and has been performed under the ap-
proval and supervision of the Clinical and Investigation Ethical Com-
mission of the University Hospital Virgen de las Nieves (CEIC).
4.2. PET database

PET data was obtained from the ADNI Laboratory on NeuroIm-
aging (LONI, University of California, Los Angeles) website
(http://www.loni.ucla.edu/ADNI/). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Insti-
tute of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a 60 million, 5-year public- private
partnership. The primary goal of ADNI has been to test whether se-
rial magnetic resonance imaging (MRI), PET, other biological mark-
ers, and clinical and neuropsychological assessment can be
2 Clinical information is unfortunately not available for privacy reasons, but only
demographic information.
combined to measure the progression of mild cognitive impair-
ment (MCI) and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effec-
tiveness, as well as lessen the time and cost of clinical trials. The
Principal Investigator of this initiative is Michael W. Weiner, MD,
VA Medical Center and University of California – San Francisco.
ADNI is the result of efforts of many co- investigators from a broad
range of academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the US and Can-
ada. The initial goal of ADNI was to recruit 800 adults, ages 55–90,
to participate in the research, approximately 200 cognitively nor-
mal older individuals to be followed for 3 years, 400 people with
MCI to be followed for 3 years and 200 people with early AD to
be followed for 2 years. For up-to-date information, see www.ad-
ni-info.org. FDG PET scans were acquired according to a standard-
ized protocol. A 30-min dynamic emission scan, consisting of 6 5-
min frames, was acquired starting 30 min after the intravenous
injection of 5.0 ± 0.5 mCi of 18F-FDG, as the subjects, who were in-
structed to fast for at least 4 h prior to the scan, lay quietly in a
dimly lit room with their eyes open and minimal sensory stimula-
tion. Data were corrected for radiation-attenuation and scatter
using transmission scans from Ge-68 rotating rod sources and
reconstructed using measured-attenuation correction and image
reconstruction algorithms specified for each scanner. Following
the scan, each image was reviewed for possible artifacts at the Uni-
versity of Michigan and all raw and processed study data was ar-
chived. Subsequently, the images were normalized through a
general affine model, with 12 parameters (Salas-Gonzalez et al.,
2008) using the SPM5 software. After the affine normalization,
the resulting image was registered using a more complex non-rigid
spatial transformation model. The non-linear deformations to the
Montreal Neurological Imaging (MNI) Template were parameter-
ized by a linear combination of the lowest-frequency components
of the three-dimensional cosine transform bases (Ashburner & Fris-
ton, 1999). A small-deformation approach was used, and regulari-
zation was by the bending energy of the displacement field,
ensuring that the voxels in different FDG-PET images refer to the
same anatomical positions in the brains. After spatial normaliza-
tion, an intensity normalization was required in order to perform
direct images comparisons between different subjects. The inten-
sity of the images was normalized to a value Imax, obtained averag-
ing the 0.1% of the highest voxel intensities exceeding a threshold.
The threshold was fixed to the 10th bin intensity value of a 50-bins
intensity histogram, for discarding most low intensity records from
outside-brain regions, and preventing image saturation. Partici-
pant’s enrolment was conditioned to some eligibility criteria. Gen-
eral inclusion–exclusion criteria were as follows:

� Normal control subjects: Mini Mental State Examination
(MMSE) scores between 24 and 30 (inclusive), a Clinical
Dementia Ratio (CDR) of 0, non depressed, non MCI, and non
demented. The age range of normal subjects will be roughly
matched to that of MCI and AD subjects. Therefore, there should
be minimal enrolment of normals under the age of 70.
� Mild AD: MMSE scores between 20 and 26 (inclusive), CDR of

0.5 or 1.0, and meets NINCDS/ADRDA criteria for probable AD.

The PET database collected from ADNI consists of 150 labeled
PET images: 75 control subjects and 75 AD patients (see Table 2
for demographic details). ADNI patient diagnostics are not patho-
logically confirmed, introducing some uncertainly on the subject’s
labels. Using these labels, allows to test the robustness of the clas-
sifier. This should be also considered when comparing to other
methods tested on autopsy confirmed AD patients, on which every
classifier is expected to improve its performance (Illán et al., 2011).

http://www.loni.ucla.edu/ADNI/


Fig. 1. Pipeline with the stages of the proposed CAD system: feature selection, training and test.
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5. Description and methodology of the CAD system

In this section, the operation of the complete CAD system oper-
ation is described in detail, from image histogram for the masking
procedure followed by discretization (in order to obtain the ROIs),
to AR-based classification of subjects into two categories: CTRL (0)
and AD (1) classes. Fig. 1 shows a block diagram of the proposed
system that consists of four stages: (i) masking procedure, (ii) dis-
cretization of mean intensity for feature selection, (iii) AR mining,
(iv) leave-one-out (loo) cross-validation (CV).

5.1. Masking

First of all, the histogram is calculated over a mean control im-
age to segment it into K1 subimages that consist of the voxels
whose intensities belong to each bin. This is also called image
thresholding as it is based on the assumption that objects can be
distinguished by their intensity level (Nakib, Oulhadj, & Siarry,
2007). The mask discards the voxels of the subimage with a value
of zero (represented in blue in Fig. 2).

Fig. 2 depicts (in the first row for SPECT and in the second one
for PET) the transaxial slice masks obtained from the average of
control images which are represented in Fig. 2a and g respectively
for both databases when the K1 = 5 subimages (from 1 to 5 in
Fig. 2b–f and h–l) are segmented by means of an intensity histo-
Fig. 2. Transaxial slice of the image histogram segmentation (SPECT in the first row and P
which are respectively divided in the following K1 = 5 subimages corresponding to each
gram. It is observed that the selected masks (the 4th for SPECT de-
picted in Fig. 2e and the 5th for PET in Fig. 2l) include the most
relevant voxels for the AD diagnosis since they are situated in
the temporoparietal regions.

5.2. Voxels selected by discretization

The mask coordinates are the center of the 3D v � v � v-sized
cubic blocks. Each block is represented by a continuous feature
that consists of the mean intensity (Imean) of the voxels whose
intensity belongs to the mask range [Imin, Imax]. The discretization
consists of an equal-width-size histogram applied to the range
[Imean�min, Imean�max] dividing it into K2 bins of equal width. Discret-
ized bins are used independently or in a combined way to define
the intervals of selected ROI value for each subject. These ROIs
act as inputs for the AR-mining algorithm (named Apriori). It is
demonstrated that while lower discretized bin combinations use
to be noisy for classification, higher ones are likely to show rele-
vant information for the AD early detection (see Tables 3 and 4).

5.3. AR mining and classification

In the training stage, AR mining captures co-occurrence pat-
terns (Jukic & Nestorov, 2006) within data of controls. Generally
speaking, control patterns are less variable than AD patterns thus
ET in the second one) obtained from control average images (depicted in (a) and (g))
bin.



Table 3
Accuracy rate (%) taking 4th bin subimage (K1 = 5) as mask and combining different
bins of discretization stage (K2 = 5) for SPECT database. Bold values show the highest
accuracy rates.

Bins of discretization 1 2 3 4 5

1 – 44.33 64.95 96.91 96.91
2 44.33 44.33 64.95 51.55 96.91
3 64.95 64.95 79.38 74.23 67.01
4 96.91 51.55 74.23 96.91 95.88
5 96.91 96.91 67.01 95.88 96.91

Table 4
Accuracy rate (%) taking 5th bin subimage (K1 = 5) as mask and combining different
bins of discretization stage (K2 = 5) for PET database. Bold values show the highest
accuracy rates.

Bins of discretization 1 2 3 4 5

1 – – 86.67 91.33 78
2 – – 86.67 57.33 78
3 86.67 86.67 88 64 59.33
4 91.33 57.33 64 91.33 92
5 78 78 59.33 92 78
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they are more suitable for obtaining relevant relationships among
brain regions using ARs, which will not be satisfied by AD patients.
A rule in this context is the relationship among transaction items
with enough support and confidence, as they are identified with
discriminant regions in the brain for the early AD diagnosis. The
AR mining process employs Apriori algorithm for finding sets of
items with confidence and support greater than a minimum sup-
port (called minsupp) and minimum confidence (called minconf)
(often called frequent itemsets) established by the user. In this
work, minsupp and minconf are selected the maxima, that is,
100%. This guarantees that the number of rules obtained is reduced
and that only the most distinguishing features for the classification
stage are used. In addition, at 100% of minconf and minsupp, it is
emphasized that all controls are correctly classified obtaining spec-
ificities of 100%. For the lowest bins, the ROIs are worse associated
and the ARs at the highest minsupp and minconf may not exist (see
Tables 3 and 4).

The AR-mining process does not consider the control who is
being evaluated in the test phase, avoiding in this way the over-
training in an iterative loo. In the test stage, following this loo
methodology, we find out for each subject the number of verified
ARs. If a subject verifies more or an equal number of ARs than a
class-threshold then, it is classified as CTRL otherwise as AD. Since
ARs are mined from controls, it is expected that healthy subjects
verify a higher number of ARs than the one verified by AD patients.
As 100% minconf and minsupp are used, the maxima accuracy
rates are obtained when the 100% of rules are verified (Chaves
et al., 2011).
6. Experimental results

Several experiments were conducted in order to test the reli-
ability of the proposed CAD system whose performance is evalu-
ated by means of its Accuracy (Acc), Sensitivity (Sen) and
Specificity (Spe).

3D-Blocks of 9 � 9 � 9-size centered in mask coordinates were
selected and discretization procedure for ROI selection is carried
out. The center coordinates of the 3D blocks are restricted to be
in 4 � 4 � 4 3D grid. Both masking and discretization are per-
formed with K1,K2 = 5.

As masking is concerned, the histogram shows an equal-width
distribution covering K1 ranges. If too few or too many ranges are
used, the histogram can be misleading. Selected K1 = 5 is intended
to show this trade-off in the light of the results with both
databases.

Related to discretization, K2 = 5 was selected as a trade-off be-
tween computational cost and accuracy results: if K2 increases,
the number of selected ROIs by discretization decreases, accelerat-
ing in this way the AR-mining process but discarding important re-
gions for the AD early diagnosis. On the other hand, as K2

decreases, computational cost slows down and does not improve
classification rates in this case.

It is remarkable that the quality of the ARs for classification is
better when minsupp and minconf are selected of 100% as the con-
trol pattern is distinguished better from the AD pattern. At this va-
lue, when selected discretized bins (usually lower ones) have not
predictive power enough, no ARs are extracted (see this effect in
Tables 3 and 4 for discretized bins 1 and 2).

6.1. Experiments with SPECT database

In the masking process, the fourth segmented subimage (see
Fig. 2e) from K1 = 5 is selected as it provides the best classification
results.

Table 3 shows the discretized bin combinations when K2 = 5 and
it is demonstrated that when the higher bins are included in the
combination, accuracy results are likely to improve. In fact, when
the 5th discretized bin is combined with the 1st, 2nd or 5th,
96.91% of accuracy is obtained (94.64% sensitivity and 100% spec-
ificity), outperforming the continuous AR-based technique Chaves
et al. (2011) with results (Acc = 94.87%, Sen = 91.07%, Spe = 100%).

6.2. Experiments with PET database

Generally speaking, PET is less activated than SPECT. This is
demonstrated in Fig. 3 that shows the average of mean intensity
features (3D blocks 9 � 9 � 9 sized with center in mask coordi-
nates) for PET and SPECT databases. It is remarkable that the used
4th mask in SPECT and the 5th one in PET have the most similar
average of mean intensity value (115.38 for SPECT and 132.59 for
PET) in comparison with the remaining subimages, guaranteeing
in this way better detection ability.

Table 4 shows discretized bin combinations for PET when the
mask presented in Fig. 2l is applied, reaching rates of Acc = 92%,
Sen = 84% and Spe = 100% (when the 4th and the 5th bins are com-
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bined) outperforming the AR-based continuous case (Acc = 91.33%,
Sen = 82.6%, Spe = 100%) Chaves, Ramírez, Górriz, and Illn (2012).
As for the SPECT database, the best results were obtained for the
higher discretized bins as they show more activation and better
detection ability for the AD.
6.3. ROC study

The receiver operating characteristic (ROC) curve has been
demonstrated to be very effective for the evaluation of CAD sys-
tems. These plots show the trade-off between the specificity and
sensitivity of the CAD system as the detection threshold varies.
Fig. 4 shows the ROC curves of the discretized-AR-based CAD
system for SPECT (Fig. 4a) and PET (Fig. 4b). ROC curve for the pro-
posed method is depicted at the best results of the discretized bin
combinations (reported in Sections 6.1 and 6.2). As shifted up and
to the left, this work outperforms other reported techniques such
as voxels as features (VAF), principal component analysis (PCA)
in combination with support vector machine (SVM) López et al.
(2009), Angulo, Anguita, Gonzalez-Abril, and Ortega (2008), lt;br/
>López et al. (2011) or the AR-continuous based method (Chaves
et al., 2011).

Note that, as the minconf and minsupp are selected at the max-
imum 100% (for continuous and discretized AR-based methods),
consequently all controls are correctly classified (Spe = 1 in the
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ROC space) since the ARs obtained are the most discriminant in or-
der to distinguish better normal from AD pattern.
7. Conclusion and outlook

Integration of discretization for feature selection and AR for
classification is proposed as an effective technique in order to de-
sign a CAD system for the early diagnosis of AD. Firstly, an image
histogram segmentation is applied over the mean control image
in order to obtain the best mask, corresponding to higher bins (in
particular the 4th for SPECT and the 5th for PET, from a total of
K1 subimages). The selection of K1 = 5 for the mask obtaining im-
plies a generalization in both databases and the assumption that
the segmentation-based histogram is not misleading (which fre-
quently occurs when too few or too many ranges are used). Sec-
ondly, an equal-width sized discretization is performed by the
combination of different bins being the most activated (or higher)
ones (from the total of K2) usually the most suitable in order to
choose the relevant 3D ROIs used as input in the AR mining.
K2 = 5 is selected as a trade-off between computational cost and
accuracy results. The proposed method reaches Acc = 96.91% (for
SPECT) and 92% (for PET) outperforming the AR-continuous base-
line method described in Chaves et al. (2011) and other reported
methods such as VAF-SVM or PCA-SVM. We have shown classifica-
tion results when used relevant discretized bins for AR-mining,
with minsupp and minconf of 100%. In that case, at the 100% of ver-
ified rules the maxima classification results are obtained and all
controls are correctly classified, that is Spe = 100%. To sum up,
the AR discovery among discrete ROIs obtained from functional
images can simplify the process of learning improving the general-
ization of the learned results for the early diagnosis of AD.
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